skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Okhuegbe, Samuel N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Power flow computations are fundamental to many power system studies. Obtaining a converged power flow case is not a trivial task especially in large power grids due to the non-linear nature of the power flow equations. One key challenge is that the widely used Newton based power flow methods are sensitive to the initial voltage magnitude and angle estimates, and a bad initial estimate would lead to non-convergence. This paper addresses this challenge by developing a random-forest (RF) machine learning model to provide better initial voltage magnitude and angle estimates towards achieving power flow convergence. This method was implemented on a real ERCOT 6102 bus system under various operating conditions. By providing better Newton-Raphson initialization, the RF model precipitated the solution of 2,106 cases out of 3,899 non-converging dispatches. These cases could not be solved from flat start or by initialization with the voltage solution of a reference case. Results obtained from the RF initializer performed better when compared with DC power flow initialization, Linear regression, and Decision Trees. 
    more » « less